Scientists need to discover, share, and analyze research findings to improve collaboration, reproducibility, and innovation.
Linked Data is a foundational technology for publishing data in a structured and machine-readable format.
For a scientist, Linked Data enables the expression of research resources, such as publications, datasets, and authors. This structured representation can describe papers, authors, citations, and references in a formal model.
skos:
or schema:
.Now, let's delve into an exemplar in the realm of AI research:
We introduce the article, the subject of our fact web, using the URL of the paper on arxiv
:
<https://arxiv.org/abs/1706.03762>
a schema:ScholarlyArticle ;
schema:name "Attention is all you need" .
The authors of the paper deserve some attention:
We have a few choices; we'll add a schema:author
because it's widely understood:
<https://arxiv.org/abs/1706.03762>
schema:author <https://fact.claims/demo/VaswaniAshish>,
<https://fact.claims/demo/ShazeerNoam>,
<https://fact.claims/demo/ParmarNiki>,
<https://fact.claims/demo/UszkoreitJakob>,
<https://fact.claims/demo/JonesLlion>,
<https://fact.claims/demo/GomezAidanN>,
<https://fact.claims/demo/KaiserŁukasz>,
<https://fact.claims/demo/PolosukhinIllia> .
The fact.claims
protocol specifies to use PROV-O wasAttributedTo
for more formal attribution and provenance.
Let's reuse the same author URLs because we're talking about the same authors:
prov:wasAttributedTo <https://fact.claims/demo/VaswaniAshish>,
<https://fact.claims/demo/ShazeerNoam>,
<https://fact.claims/demo/ParmarNiki>,
<https://fact.claims/demo/UszkoreitJakob>,
<https://fact.claims/demo/JonesLlion>,
<https://fact.claims/demo/GomezAidanN>,
<https://fact.claims/demo/KaiserŁukasz>,
<https://fact.claims/demo/PolosukhinIllia> .
We can expand our primary resource with some additional context, like the journal, publisher, and a link to Wikipedia
for good measure:
<https://arxiv.org/abs/1706.03762>
schema:datePublished "2017-06-12" ;
schema:publisher "arXiv" ;
schema:isPartOf <https://arxiv.org/> ;
skos:related <https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)> ;
We've referenced some resources, and we can include some basic facts about them too:
<https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)>
a schema:WebPage ;
schema:name "Transformer (machine learning model)" .
Since we're using RDF Turtle, we must define our prefixes before we refer to them:
@prefix schema: <https://schema.org/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix fact: <https://fact.claims/v0/trust#> .
@prefix cito: <http://purl.org/spar/cito/> .
@prefix w3cvc: <https://www.w3.org/2018/credentials#> .
# Article and Authors
<https://arxiv.org/abs/1706.03762>
a schema:ScholarlyArticle ;
schema:name "Attention is all you need" ;
schema:author <https://fact.claims/demo/VaswaniAshish>,
<https://fact.claims/demo/ShazeerNoam>,
<https://fact.claims/demo/ParmarNiki>,
<https://fact.claims/demo/UszkoreitJakob>,
<https://fact.claims/demo/JonesLlion>,
<https://fact.claims/demo/GomezAidanN>,
<https://fact.claims/demo/KaiserŁukasz>,
<https://fact.claims/demo/PolosukhinIllia> ;
prov:wasAttributedTo <https://fact.claims/demo/VaswaniAshish>,
<https://fact.claims/demo/ShazeerNoam>,
<https://fact.claims/demo/ParmarNiki>,
<https://fact.claims/demo/UszkoreitJakob>,
<https://fact.claims/demo/JonesLlion>,
<https://fact.claims/demo/GomezAidanN>,
<https://fact.claims/demo/KaiserŁukasz>,
<https://fact.claims/demo/PolosukhinIllia> ;
schema:datePublished "2017-06-12" ;
schema:publisher "arXiv" ;
schema:isPartOf <https://arxiv.org/> ;
skos:related <https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)> .
# Verifiable Credentials
<https://arxiv.org/abs/1706.03762>
a w3cvc:VerifiableCredential ;
cito:citesAsDataSource <https://arxiv.org/abs/1706.03762> .
# Wikipedia Resource
<https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)>
a schema:WebPage ;
schema:name "Transformer (machine learning model)" .